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Abstract 

While machine learning models have proven effective for Industrial Anomaly 
Detection (IAD), their inherent black-box nature creates a critical explanation 
gap, leaving operators without the actionable context needed for rapid and 
confident decision-making. Existing explainable AI (XAI) and explainable 
anomaly detection (XAD) methods provide feature-level attributions but fall 
short of delivering the context-rich narratives required in high-stakes 
environments. 

This project introduces Anomaly eXplanations for Industrial control Systems 
(AXIS), a novel framework that addresses this gap by leveraging a retrieval-
augmented generation (RAG) pipeline to produce context-aware explanations for 
anomalies. The methodology, validated using the Secure Water Treatment 
(SWaT) dataset, synthesises low-level feature attributions from an upstream 
detection model with a multi-source knowledge base containing system 
documentation and the MITRE ATT&CK for ICS framework. 

A multi-faceted evaluation demonstrates that the framework’s advanced RAG 
pipeline successfully provides robust contextual grounding, acting as a crucial 
guardrail against the inherent limitations of large language models, such as 
knowledge gaps and hallucinations. These objectively higher-quality 
explanations subsequently improved user confidence and perceived actionability 
while reducing cognitive load, validating the approach as a powerful tool for AI-
assisted anomaly triage. The results demonstrate that this knowledge-
augmented framework successfully translates opaque numerical alerts into 
meaningful, actionable intelligence for industrial operators. 
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Chapter 1 Introduction 

The increasing integration of Information Technology with traditionally isolated 
Operational Technology in the era of Industry 4.0 has expanded the attack 
surface of Industrial Control Systems, rendering critical infrastructure 
vulnerable to sophisticated cyber-physical threats [1]. In response, AI-based 
Industrial Anomaly Detection systems have been developed to identify subtle 
deviations from normal operational behaviour [2]. However, while these systems 
demonstrate high detection efficacy, their inherent black-box nature creates a 
significant semantic gap; their abstract numerical alerts provide little to no 
operational context, leaving human operators to manually investigate the cause, 
impact, and appropriate response, thereby increasing cognitive load and delaying 
mitigation. 

Initial forays into explainable AI and explainable anomaly detection have sought 
to address this by providing feature attribution scores [3], [4]. Yet, these methods 
still fall short of delivering the actionable intelligence required in high-stakes 
environments. The output, typically a ranked list of influential system 
components, lacks a narrative structure, fails to connect the anomaly to known 
adversarial tactics, and requires significant domain expertise to interpret 
correctly. This dissertation contends that the critical, unaddressed research gap 
lies not in the detection of anomalies but in their effective explanation. 

To this end, this project proposes and validates AXIS: Anomaly eXplanations 
for Industrial control Systems, a multi-stage framework that leverages a 
large language model, enhanced by an advanced retrieval-augmented generation 
architecture, to function as a sophisticated explanation layer. Building upon a 
previously validated ensemble method for anomaly detection and feature 
attribution [5], the primary contribution of this project is a system that 
synthesises these low-level, quantitative XAI outputs with a curated, multi-
source knowledge base of technical system documentation and structured threat 
intelligence. By leveraging this architecture, AXIS transforms opaque numerical 
alerts into context-rich, reliable, and actionable natural language explanations. 
This approach bridges the gap between automated detection and human 
understanding while also serving as a crucial guardrail against the inherent 
limitations of large language models, ensuring the reliability of the generated 
explanations in safety-critical environments. 

The remaining chapters of this dissertation detail the project as follows. Chapter 
2 provides a comprehensive literature survey of previous work in the domain of 
explainable AI in industrial anomaly detection, establishing the research gap 
that this project addresses. Chapter 3 then details the methodology of the multi-
stage AXIS framework, from knowledge base curation to the final synthesis of 
context-aware explanations, addressing the previously identified research gaps. 
Following this, Chapter 4 presents the empirical evaluation of the system, 
detailing the framework and results of the content analysis, user study, 
operational overhead assessment, and robustness under stress conditions. 
Finally, Chapter 5 concludes the dissertation by summarising the key findings 
and offering suggestions for future research directions.   
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Chapter 2 Survey  

This chapter seeks to provide an in-depth critical analysis of key aspects in 
prevailing approaches to anomaly detection and explanation in industrial control 
systems. The aim is to establish the context and justification for the research 
methodology and evaluation for AXIS, as developed in subsequent chapters. 

2.1 Evolution of Industrial Control Systems 

Industrial control systems (ICS) constitute the backbone of critical 
infrastructure, responsible for the operation, management, and regulation of 
processes in domains such as power generation, water treatment, transportation, 
and manufacturing [4]. Unlike conventional information technology (IT), ICS 
hardware and protocols are specialised operational technology (OT) designed for 
long lifecycles and reliability, rather than security [2]. Initially, such OT systems 
operated in isolated, proprietary networks, providing inherent security through a 
physical and logical separation [2]. However, Industry 4.0 has led to the 
transformation of these air-gapped ICS networks to increased connectivity and 
integration with modern technologies like the Internet of Things (IoT), Cloud 
Computing and Artificial Intelligence (AI) [1]. The exposure of traditional OT 
environments through insecure IT protocols, remote access, and third-party 
devices has made ICS systems vulnerable targets for cyberattacks. The recent 
history of ICS attacks, such as the 2010 Stuxnet malware, which destroyed 
around 1,000 Iranian nuclear centrifuges, and the 2020 Ekans ransomware 
attack, which disrupted Honda’s global operations by causing multiple plant 
shutdowns [7], highlights the severe safety, economic and national security risks 
of compromised ICS systems. This elevated threat landscape demands advanced 
monitoring and defence mechanisms, leading to the development of sophisticated 
Industrial Anomaly Detection (IAD) systems. 

2.2 Importance of Industrial Anomaly Detection 

Cyberattacks on ICS differ markedly from those against traditional IT networks; 
often involving a complex sequence of attacks across various ICS devices [2] that 
can be long-lasting to evade detection and eventually cause physical damage, 
characteristics of Advanced Persistent Threats (APT) [8]. To counter these 
escalated threats and safeguard system integrity and operational safety, 
anomaly detection techniques are utilised at the network or host level to identify 
network intrusions or malicious system behaviours in ICS environments. 
Because these threats often manifest as subtle deviations in physical processes, 
specialised anomaly detection techniques are required. Typically, IAD systems 
profile benign system behaviour to establish a baseline, which is then used to 
detect deviations [9]. However, these traditional approaches face significant 
hurdles, including concept drift, where system behaviour evolves due to the 
physical nature of ICS components; and the immense data requirements for 
training, which introduces challenges related to data privacy, resource costs, and 
the general scarcity of good-quality proprietary industrial data [9], [10]. This 
motivates research into effective detection and scalable mitigation strategies 
tailored for ICS settings. 
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2.3 Development of IAD from Statistical Methods to AI 

The evolving landscape of cyber threats in ICS has driven the development of 
increasingly sophisticated anomaly detection techniques. Early anomaly 
detection approaches employed statistical methods like Isolation Forest or k-
Nearest Neighbours (kNN) [11] and Empirical-Cumulative-distribution-based 
Outlier Detection (ECOD) [12] for structured data. However, these methods 
typically lacked transferability and were vulnerable to issues like concept drift, 
leading to elevated false-positive anomalies and poor adaptation to dynamic 
industrial environments. Hence, they required the long-term experience of 
operators to interpret complex alerts for abnormal ICS operations [3]. Addressing 
these limitations, machine learning (ML) and deep learning (DL) models are 
increasingly employed for anomaly detection. ML-based methods, including 
Support Vector Machines (SVMs), Decision Trees, Random Forests, and 
clustering, are used for classifying sensor data and network traffic into normal or 
anomalous categories [10]. Deep learning, a subset of ML, introduced techniques 
like Convolutional Neural Networks (CNNs), Recurrent Neural Networks 
(RNNs), Long Short-Term Memory (LSTM) and Autoencoders (AEs) [1], which 
demonstrate higher performance than statistical and ML approaches, especially 
with increasing data scale [2], [11]. 

These approaches, however, rely heavily on extensive training datasets, 
discovering patterns and developing systems for decision-making, based on 
historical data, which introduces several challenges. Firstly, the lack of labelled 
data is a significant hurdle, particularly because anomalous events are 
inherently rare and less likely to be represented in training datasets [13]. This 
dependence on extensive datasets raises concerns about data availability, 
quality, and potential model bias. Secondly, the use of finite benchmark datasets 
raises a generalisability challenge for these models [14], as they fail to transfer 
learned patterns effectively across novel scenarios, leading to suboptimal 
predictions due to their knowledge boundary [13]. Therefore, although such AI-
based anomaly detection methods have demonstrated high efficiency, their 
inherent black-box nature limits the understanding of their decision-making 
process. Recent development into explainable AI (XAI) attempts to bridge this 
gap between AI performance and human interpretability [3], [15]. 

2.4 The Rise of Explainable AI in ICS Cybersecurity 

The opacity of ML and DL models impedes their adoption in safety-critical 
settings, as it precludes operators from understanding the rationale behind their 
automated predictions [1]. The lack of transparency and difficulty interpreting 
real-time threats by these black-box models, which cannot explain their decisions 
on their own, leads to time-consuming analysis and complexity overhead, 
resulting in operators being reluctant to adopt these AI systems for effective 
management and timely response against probable threats, especially in safety-
critical environments [4], [16]. This shortcoming prompted the emergence of 
Explainable AI (XAI), and more specifically, the sub-field of Explainable Anomaly 
Detection (XAD), which aims to produce human-understandable explanations for 
AI system decisions, improving trust, transparency and operational efficiency [1]. 
Existing XAI methods for ICS anomaly detection are primarily post-hoc and 
involve perturbation-based methods such as SHapley Additive exPlanations 
(SHAP) and Local Interpretable Model-agnostic Explanations (LIME), which 
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approximate feature importance by locally fitting interpretable surrogate models 
[4], [15]; and Randomised Input Sampling for Explanation (RISE), which 
estimates pixel-level importance for vision tasks [17]. More recent work has 
explored gradient-based attribution methods such as Saliency Maps (SM), which 
compute the sensitivity of the model’s anomaly score with respect to each input 
feature, highlighting the most influential sensors and actuators [5]. In parallel, 
Local Explanation Method using Nonlinear Approximation (LEMNA) extends 
LIME with a fused Lasso regression and Gaussian mixture model, providing 
more stable local approximations for highly non-linear models typical in ICS 
anomaly detection [5]. 

Such foundational XAI techniques aimed to address the problem of operators’ 
understanding of system-generated anomaly alerts. However, empirical studies 
show that attribution accuracy varies with attack characteristics, and no single 
method is consistently reliable [5]. Moreover, deployment of these XAI tools to 
increase operator efficiency does not translate to utilisation and adoption in ICS 
settings due to the nature of workflows and the propensity to distrust XAI 
outputs in mission-critical environments [18], particularly when faced with the 
ambiguity of alerts caused by generalisability failures previously outlined. The 
failure of traditional XAI methods to deliver actionable operator insight 
highlights the need for a new approach that can synthesise low-level feature 
attributions with high-level system knowledge to create a narrative explanation. 
Addressing this limitation has driven new research into leveraging the advanced 
reasoning and natural language generation capabilities of Large Language 
Models (LLMs) to build on the above numerical attribution methods in providing 
useful, context-rich explanatory dialogues for cybersecurity in ICS. 

2.5 Leveraging Large Language Models for Cybersecurity 

To address the explanation gap, research has increasingly focused on 
Transformers and LLMs (e.g., BERT, GPT) that have revolutionised natural 
language processing (NLP). Surveys indicate that transformer-based intrusion 
detection systems (IDS) can outperform traditional ML models as attention 
mechanisms can better identify complex, long-range patterns in the data [19]. 
Early studies repurposed pretrained language models for anomaly detection by 
treating sensor and network logs as text sequences and reported nearly perfect 
classification performance on benchmark datasets [20]. However, a significant 
methodological concern arises from the use of LLMs themselves. Since the 
training corpora for these models are often vast and opaque, it is difficult to 
ascertain whether public benchmark datasets were included in their training 
data. This presents a potential validity threat, often called data contamination or 
data leakage, where a model’s performance may be attributable to memorisation 
rather than true generalisation [13]. Additionally, within ICS-specific research, 
LLMs are being leveraged beyond classification: 

• Rules and Invariant Generation: LLMs have been used to 
autonomously create explainable and reproducible anomaly detection 
rules by generating Python code for anomaly detection [21]. LLMs have 
also been shown to be effective in extracting physical invariants from 
cyber-physical systems (CPS) design documentation using their 
pretrained physics and engineering knowledge to determine the working 
dynamics between system components [22]. Furthermore, LLM agents 



 5 

have been used to identify novel attack patterns by analysing expert-
developed action sets and operational documentation [23]. These methods 
explore XAI by using LLMs with external knowledge to generate human-
interpretable and deterministic rules for anomaly detection. 

• Natural Language Explanations: LLMs can generate intuitive 
explanations of detected anomalies, offering context on their underlying 
causes and potential implications [24]. Foundational work relies on the 
pretrained knowledge of LLMs to translate complex anomaly alerts into 
human-readable, non-technical explanations for non-experts and suggest 
countermeasures [25]. Additionally, in addressing the traditional black-
box problem, LLMs have been harnessed for high interpretability by 
providing information like anomaly points, anomaly types, alarm levels, 
and explanations alongside anomaly predictions [26]. Lastly, LLMs have 
been used as a conversational interface to emphasise user understanding 
of detected anomalies [27]. 

In summary, LLMs bring two potential advantages to ICS security: generating 
attack signature data along with ICS environment emulations; and processing 
cybersecurity data, such as logs and systems manuals, to serve as explainable 
intelligence aids. In contrast, while LLMs show promise, their inherent 
limitations necessitate careful design considerations. LLMs are prone to 
hallucinations, i.e., generating false, erroneous or irrelevant information as 
factual, which can lead to critical misjudgments and diminish user trust, 
especially in cybersecurity contexts [28] where models may fabricate component 
names or relationships. Moreover, they often struggle with numerical accuracy 
and consistent calculations given their inherent stochastic nature, often 
hallucinating indices or values in time series data [29], which makes 
reproducibility and reliability a concern, particularly in critical infrastructure 
deployments [30]. General-purpose LLMs also possess a limited context window, 
making it challenging to process the massive volumes of time-series data in the 
form of logs and system events continuously generated by ICS systems, without 
significant loss of information [28]. Furthermore, they often lack the deep, 
nuanced domain-specific knowledge required for ICS and OT environments, 
limiting their accuracy in discerning subtle deviations or providing contextually 
relevant explanations for anomalies [13]. Finally, the computation cost and 
latency associated with LLM inference can be prohibitive for real-time anomaly 
detection, posing scalability challenges in resource-constrained industrial 
settings [13].  Retrieval-Augmented Generation (RAG) techniques, where an 
LLM is provided with semantically relevant knowledge snippets at inference 
time, are a potential solution to some of these limitations by integrating LLMs 
with external, authoritative knowledge bases [31]. RAG therefore offers a 
promising avenue for combining precise domain information with natural-
language explanations, without overwhelming the model’s context window, 
bridging the explanation gap, and possibly improving operators’ experience with 
AI-based IAD systems; however, empirical validation remains scarce due to 
deployment challenges. 

2.6 Deployment Challenges of AI-based IAD in Production 

Advanced AI systems have proven their capabilities for industrial anomaly 
detection on benchmark datasets; however, the results from their deployment in 
production settings fall short of the demonstrated theoretical performance due to 
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several challenges. AI-based IAD systems demand considerable computational 
resources, given the extensive parameter spaces and high data throughput 
characteristic of large-scale ICS deployments. Additionally, the commonly used 
benchmark datasets themselves are known for not reflecting realistic ICS data, 
unsuitable labelled anomalies or features for effective anomaly detection, or 
being outdated [32]. Hence, there is a recognised scarcity of suitable, high-
quality, and diverse datasets for ICS, particularly those with well-represented 
and well-labelled attack data [32]. Furthermore, models trained on such specific, 
artificial scenarios struggle to generalise to diverse industrial domains, 
communication protocols, or evolving operational conditions [13]. Retraining or 
fine-tuning models on domain-specific data for adaptation is a possible solution; 
however, it is a costly and time-consuming process [9]. While traditional ML/DL 
models, once trained, can have low inference latency, the same cannot be said for 
LLMs. In contrast, the high inference latency of current LLMs often makes them 
unsuitable for real-time applications where immediate detection and response 
are critical  [11], [26]. 

The integration of such new AI and XAI tools into existing complex ICS 
workflows and Security Information and Event Management (SIEM) is a 
challenge because of the semantic gap between the low-level feature spaces in the 
dataset and the complexities of real-world interpretations [18], particularly 
among correlated systems. Another barrier to integration is operator scepticism, 
where, despite their potential, AI models are often underutilised or mistrusted, 
failing to enhance decision-making in real-world cybersecurity operations [18]. 
Demonstrably, AI models for IAD prioritise recall over precision due to the risks 
involved with missed anomaly detections. However, this causes alert fatigue from 
a multitude of false positives, prompting analysts to prefer relying on existing 
tools over automated tools for validation [18]. Hence, there is an increased focus 
on effective deployment of such AI systems with user-centric design tailored to 
different stakeholders’ needs [15]. Finally, regulatory and ethical considerations 
cannot be ignored in ICS settings. The use of AI in critical infrastructure raises 
concerns about data privacy, security risks from cyberattacks on sensitive data, 
and potential model biases [1]. There are valid ethical questions on an over-
reliance on AI or the potential for manipulative explanations [25]. The use of 
LLMs for IAD poses additional risks where attackers exploit the rules made by 
the LLMs themselves, or by poisoning the LLM with confusing adversarial 
samples [9]. The increased risks associated with integrating AI systems in ICS 
settings make compliance with cybersecurity standards and regulations (e.g., 
IEC 62443, Cyber Resilience Act) a potential hurdle; however, extremely crucial 
[28]. Hence, these cumulative challenges underscore the need for a more secure, 
context-aware explanation framework. 

2.7 Research Questions to Address the Current Gap 

As summarised in Table 1, existing literature demonstrates the research 
landscape of IAD across improving anomaly detection performance as well as 
explainability. While valuable, these methods output abstract, feature-level 
scores, falling short of providing the narrative, context-aware explanations 
required by operators in ICS environments. The emergence of LLMs has created 
a new frontier for explainability, with recent state-of-the-art models increasingly 
focusing on RAG techniques. However, current work demonstrates that the 
application of RAG is often targeted at adjacent problems, such as anomaly 
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detection and rule generation, but remains unexplored in the explicit generation 
of explanations for time-series anomalies. For instance, some frameworks 
leverage RAG to improve defect localisation in image data [31] or to provide a 
natural language interface for querying existing knowledge graphs [28]. Other 
highly relevant work uses RAG techniques to improve the detection performance 
on log data [33] and by retrieving examples of normal system behaviour to 
provide better context to the detection model itself [34], [35]. 
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[2], [8], [9], [11], [36], [37] ✓ ✗ ✗ ✗ ✗ 

[3], [4], [5], [12], [17], [38] ✓ ✓ ✗ ✗ ✗ 

[1], [18], [24], [25], [27], [30] ✓ ✓ ✗ ✓ ✗ 

[21], [26], [29], [39], [40] ✓ ✓ ✓ ✓ ✗ 

[28], [31], [33], [34], [35] ✓ ✓ ✓ ✓ ✓ 

Table 1: Capabilities and Limitations of Existing Literature 

Building on these insights, this project focuses exclusively on enhancing the 
explanation layer of an existing AI/XAI anomaly-detection pipeline to address the 
deficiencies identified in current approaches. Specifically, a RAG-enabled LLM 
component is integrated that synthesises feature attributions and a curated 
domain knowledge into concise, context-aware narratives. The goal is then to 
assess whether and how this augmentation improves both human and system-
level metrics of explanation quality, as well as the computational characteristics 
of the AXIS framework. Accordingly, the study is guided by the following 
research questions to ascertain its utility, robustness and integration costs: 

• RQ1: How does a metadata-driven advanced RAG pipeline affect the 
quality of generated explanations compared to a naive RAG baseline? 

• RQ2: How does the format of an anomaly explanation affect a non-
expert's interpretation of XAI outputs in an ICS context? 

• RQ3: What is the operational overhead of a sophisticated, metadata-
driven RAG pipeline compared to a naive implementation? 

• RQ4: How does the fidelity of the AXIS framework’s explanations degrade 
under complex attacks and flawed feature attributions? 

These research questions collectively provide a comprehensive basis for 
rigorously evaluating AXIS. They are designed to assess not only the clarity and 
content of the generated explanations but also the practical system performance 
and the trade-offs inherent in a knowledge-augmented approach. Answering 
these questions will therefore contribute to a deeper understanding of how RAG-
enhanced LLMs can be effectively deployed in critical ICS security environments, 
addressing both empirical and qualitative dimensions of explainability.  
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Chapter 3 Methodology 

This chapter details the methodological framework for AXIS, designed to address 
the research questions outlined in Chapter 2. It integrates metadata extraction 
and vector index curation, explainable AI feature attribution and a 
retrieval-augmented generation (RAG) pipeline to transform opaque numerical 
alerts into context-rich, actionable intelligence. The chapter is structured to flow 
from a high-level overview to a detailed description of the technical 
implementation of the proposed system. 

3.1 Bridging the Semantic Gap in ICS Anomaly Analysis 

Existing industrial anomaly detection (IAD) systems exhibit a pronounced 
semantic gap [24], i.e. their abstract numerical outputs, e.g., “anomaly detected 
at timestamp T with reconstruction error 0.85”, provide no operational context 
for timely decision-making. Although such quantitative alerts accurately signal 
deviations from baseline behaviour, they do not indicate the underlying cause, 
severity or likely impact. Consequently, operators must perform manual 
investigations to interpret each anomaly, which increases response time and 
cognitive load [26]. Therefore, this methodology aims to construct and validate a 
framework that systematically bridges this gap, transforming low-level 
numerical alerts into the high-level qualitative insights required by operators, 
e.g., “an adversary is manipulating the raw water tank level sensor to cause a 
potential overflow, consistent with the ‘Manipulation of View’ technique.” 

 
Figure 1: High-Level Architecture of the AXIS Framework 

To achieve this, the proposed methodology is composed of three sequential stages, 
as shown in Figure 1, integrating independent modules into a cohesive workflow. 

1. Stage I: Knowledge-Base Curation: In the first stage, relevant 
documentation, such as equipment technical manuals and cybersecurity 
reference materials, is parsed to extract metadata and divided into 
semantically coherent documents. These documents are then embedded 
using a pre-trained transformer encoder and stored in a vector database. 
The resulting curated knowledge base facilitates efficient retrieval of the 
contextual information necessary for explaining detected anomalies. 

2. Stage II: Anomaly Detection with XAI Attributions: The second 
stage processes the time-series data from the target ICS. A sequence 
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model, specifically, an LSTM autoencoder, is trained on historical normal 
operation traces. At inference, reconstruction error serves to flag 
anomalous windows. Concurrently, model-agnostic attribution methods 
quantify each sensor’s contribution to the detected anomaly. The resulting 
anomalous time window and attribution vector guide query generation 
and anomaly explanation in the subsequent stage. 

3. Stage III: Retrieval-Augmented Explanation Pipeline: In the final 
stage, the ensemble attribution is used to generate structured metadata 
filters that guide document retrieval from the multi-source knowledge 
base. A structured language model synthesises the combined qualitative, 
contextual and quantitative statistical information into a coherent 
explanation, including root causes, potential impacts, and mitigation 
strategies as the anomaly explanation, in natural language. 

Hence, by organising the AXIS framework into three distinct stages, each 
comprising well-defined components, the methodology ensures modularity, 
reproducibility, and clear provenance for every generated explanation. 

3.2 Stage I: Curation of a Multi-Source Knowledge Base 

The quality and relevance of the explanations generated by AXIS are directly 
dependent on the structure, granularity, and contextual richness of the 
underlying knowledge corpus. To this end, a multi-step process, as illustrated in 
Figure 2, was employed to extract, normalise, and embed knowledge from diverse 
sources into a semantically searchable format that supports both technical 
process understanding and cybersecurity threat intelligence. 

 
Figure 2: Multi-Source Knowledge Base Methodology 

Essential domain knowledge for ICS environments is typically distributed across 
heterogeneous formats, including textual process descriptions, tabular 
component lists, and engineering schematics such as Piping and Instrumentation 
Diagrams (P&IDs). These sources often resist uniform parsing and lack semantic 
annotation, necessitating a multimodal extraction approach. The methodology 
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implemented uses LlamaExtract1, a document parsing system that integrates 
large language models, systematically processing three distinct content 
categories: component specification extracted from tabular documentation, 
connectivity relationships derived from pid diagrams, and high-level process 
stage descriptions encompassing operational workflows. 

To provide a comprehensive cybersecurity grounding, the knowledge base was 
augmented with structured attack_technique records derived from the 
MITRE ATT&CK for ICS framework [41]. This industry-standard taxonomy 
catalogues adversary behaviours observed in real-world attacks against OT 
environments. All 83 techniques catalogued in the framework were extracted, 
each containing a unique identifier, name, description, associated tactics (e.g., 
“Initial Access”, “Impair Process Control”), and, where available, mitigation and 
detection strategies. These documents serve as the adversarial context layer in 
the RAG pipeline, enabling systematic linking of ICS anomalies to documented 
attack vectors. 

The complete multi-source corpus was transformed into a format compatible with 
hybrid retrieval, with its implementation available on GitHub2. First, all content 
was manually normalised and validated to ensure consistency across diverse 
document formats and eliminate extraction errors. Second, each document type 
was embedded using OpenAI’s text-embedding-ada-002 model3 while retaining 
structured metadata to support both semantic search and categorical filtering. 
For instance, a document describing a level transmitter would be embedded 
using a textual summary (e.g., “Component: LIT301\nDescription: UF 
Feed Water Tank LIT\nDesign Specification: Ultrasonic, Range 
0.2 to 6m\nMaterial: Non Contact\nBrand Model: ISOLV 
LevelWizard II”), while retaining structured metadata as: 
"metadata":{"source":"System_DOC","doc_type":"component","comp
onent_id":"LIT301","stage_id":"Subsystem-3"}. 

For index vector embedding storage and querying, LlamaIndex was leveraged 
again due to its managed solution offering native support for hybrid metadata 
filtering and RAG use cases. This approach enables efficient retrieval of 
contextually relevant information during explanation generation, with the 
indexed corpus comprising 230 documents spanning technical specifications, 
process documentation, connectivity information, and threat intelligence. The 
resulting knowledge base index facilitates precise, context-aware retrieval that 
underpins the subsequent stages of the AXIS framework. 

3.3 Stage II: Anomaly Detection and XAI-Powered Feature 
Attribution 

The second stage performs anomaly detection on time-series control systems 
data, from data pre-processing and model training to the detection of anomalous 
data points triggering the attribution computation, as illustrated in Figure 3. 
The pipeline is initiated by splitting the data into training and testing datasets 
for the unsupervised anomaly detection model. For this project, an LSTM-based 

 
1 https://www.llamaindex.ai/llamaextract 
2 https://github.com/siddydutta/ics-anomaly-metadata 
3 https://platform.openai.com/docs/models/text-embedding-ada-002 

https://www.llamaindex.ai/llamaextract
https://github.com/siddydutta/ics-anomaly-metadata
https://platform.openai.com/docs/models/text-embedding-ada-002
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autoencoder is selected due to its ability to model temporal dependencies in 
sensor data. This choice is further justified by its well-documented effectiveness 
for ICS time-series data [13], [24] and its successful application in prior academic 
research using datasets like SWaT [2], [3], [5]. The model is trained exclusively 
on data from normal system operation based on an effective model architecture 
and hyperparameters outlined in previous work [5]. During inference, it 
processes a moving window of sensor and actuator data and attempts to 
reconstruct the current system state. An anomaly is flagged when the Mean-
Squared Error (MSE) between the predicted state and the actual observed state 
surpasses a defined threshold set at the 99.95th percentile validation error. 

Upon detecting an anomaly, ranking features by their raw reconstruction error is 
typically insufficient for accurate root cause analysis. As mentioned in Chapter 
2.4, the accuracy of individual attribution methods can vary significantly 
depending on the timing of the detection and the specific properties of the attack. 
To overcome these limitations, this project uses a previously proposed and 
validated [5] ensemble-attribution method. This ensemble technique, as 
implemented by the code provided in Snippet 1, mitigates the weakness of any 
single method by combining the output of three distinct methods to generate a 
more reliable feature ranking: 

1. Mean-Squared Error (MSE): The raw, per-feature reconstruction error 
from the LSTM autoencoder. 

2. Saliency Maps (SM): A white-box attribution method that uses model 
gradients to quantify feature importance. 

3. LEMNA: A black-box attribution method that builds a local interpretable 
model to explain the autoencoder’s output. 

 
Figure 3: Anomaly Detection & Ensemble Attribution Workflow 
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The final attribution score for each feature is a weighted average of the 
normalised scores from these three methods. The ensemble gives additional 
weight to the ML-based methods (SM and LEMNA) for actuator features, as they 
often have more complex relationships within the system. The score for an 
actuator is thus calculated as: 

𝑆ensemble = 𝑀𝑆𝐸norm + β ⋅ 𝑆𝑀norm + β ⋅ 𝐿𝐸𝑀𝑁𝐴norm 

where β is set to 2.5 to optimise performance, a value supported by empirical 
results [5]. For sensor features, a simple average (i.e., a β = 	1) is used. 

The implementation for this stage builds on previously published work and is 
available on GitHub4. Thus, the output of this stage is a ranked list of feature 
attributions for each anomaly, along with their detection points in the time-series 
data. This data-driven output serves as the primary input for the next stage, 
seeding the query generation process for the RAG-based explanation pipeline. 

3.4 Stage III: Explanation Synthesis with Retrieval 
Augmentation 

The final stage of the AXIS framework is responsible for producing structured, 
high-fidelity explanations of anomalous behaviour detected within the target ICS 
system. The aim is for these explanations to incorporate quantitative statistical 
anomaly data, physical process context and plausible adversarial causes for 
operator review. To achieve this, an advanced hybrid retrieval-augmented 
generation (RAG) framework is employed, grounded in two domain-specific 
corpora: (i) technical process documentation from the target system’s knowledge 
base and (ii) adversarial threat intelligence from the MITRE ATT&CK 
framework for ICS. This RAG framework is designed to coerce the language 
model to rely on the curated, verifiable knowledge base for explanations, rather 
than its internal and potentially memorised knowledge, thereby reducing 
hallucinations. The synthesis pipeline proceeds through four steps: anomaly 
statistics computation, metadata-guided retrieval, attack technique-conditioned 
enrichment, and structured language model inference, as shown in Figure 4. 

 
Figure 4: Hybrid Retrieval-Augmented Explanation Generation 

 
4 https://github.com/siddydutta/ics-anomaly-attribution 

https://github.com/siddydutta/ics-anomaly-attribution
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Each anomaly explanation is initiated using the outputs from Stage II, which 
identify the most influential component associated with the detected anomaly 
and the corresponding time window of anomalous behaviour. For this anomaly 
window, statistical summaries are computed to characterise deviations from 
baseline operation. These summaries include central tendency, variability, 
magnitude and direction of change. This statistical profile is incorporated into 
the downstream reasoning process as explicit, structured evidence, ensuring that 
the generated explanation is grounded in quantitative, measurable process 
behaviour rather than solely textual context. 

Concurrently, metadata filters are derived from the top-attribution component 
using a heuristic mapping procedure developed using Snippet 2, for example, 
mapping a component identifier like MV101 to corresponding metadata filters 
such as component_id = “MV101” and stage_id = “Subsystem-1”. These 
filters constrain retrieval to documents containing directly relevant component 
specifications, P&ID-derived connectivity information, and operational stage 
descriptions. Retrieval is performed using LlamaIndex’s dual search capabilities, 
combining semantic and lexical matching to ensure that both technically precise 
and conceptually related documents are retrieved for explanation generation. 

To introduce adversarial context into the explanation, a second, more complex 
retrieval step is performed. First, the documents retrieved from the target ICS 
corpus are passed to an LLM prompt, which infers the likely MITRE ATT&CK 
tactics associated with the anomaly, based on the component information. These 
tactics are then used as metadata filters to retrieve corresponding relevant 
technique descriptions from the MITRE ATT&CK for ICS documents in the 
index, using the same dual retrieval system as before. Hence, the tactic inference 
stage serves as a semantic bridge between process-level anomalies and abstract 
adversarial objectives. 

The final step synthesises the computed and retrieved context, both process-
specific and adversarial, into a coherent explanation using a structured 
prompting scheme. The prompt, as given in Snippet 3, directs the LLM to 
produce a concise four-part explanation: 

i. a summary of the anomaly and its relevance to the component’s function, 
ii. potential root causes, 

iii. downstream impacts, 
iv. and recommended mitigation strategies. 

 
The output is generated using OpenAI’s gpt-4o-mini language model, selected 
for its balance of capability, latency, and cost-effectiveness. Among the available 
options, gpt-4o-mini demonstrated strong performance in following complex, 
structured prompts, while incurring significantly lower latency and operational 
cost than larger models such as GPT-4.1 and GPT-5. Given the system’s 
requirement for timely and responsive analysis, this trade-off was considered 
critical to maintaining both operator experience and resource efficiency. The 
complete implementation with explanations is available on GitHub5 along with 
latency metrics and LLM token statistics, to enable the evaluation of the 
proposed AXIS system, as discussed in the following chapter.  

 
5 https://github.com/siddydutta/ics-anomaly-explanation 

https://github.com/siddydutta/ics-anomaly-explanation
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Chapter 4 Evaluation 

This chapter reports the empirical evaluation of the AXIS framework. Using the 
methodology detailed in Chapter 3, the framework is tested on a high-fidelity 
SWaT industrial control system dataset. The primary objective is to assess the 
efficacy and operational characteristics of the proposed anomaly explanation 
framework by systematically addressing the four research questions established 
in Chapter 2.7. 

4.1 Experimental Setup 

To empirically validate the AXIS framework, this evaluation uses the iTrust 
Secure Water Treatment (SWaT) dataset, developed and maintained by the 
Singapore University of Technology and Design (SUTD) [42]. The dataset derives 
from a high-fidelity, operational testbed that simulates a model water treatment 
facility. It records both physical-process data (sensor readings and actuator 
states) and corresponding network traffic under normal operation and during 
deliberate cyber-physical attacks. This representative dataset provides a rigorous 
basis for developing and testing a context-aware analysis system. 

Stage Description Physical Components 

P1 Raw Water Supply & 
Storage 

Intake and storage of raw 
water via motor-valve; 
level control. 

Raw water tank; motor-
valve; level transmitter 

P2 Chemical Dosing 
Injection of pre-
treatment chemicals to 
adjust pH and disinfect. 

Dosing pumps; pH 
transmitter; chemical 
reservoir level sensor 

P3 Ultrafiltration (UF) 
Removal of suspended 
solids and backwash 
cycle. 

UF membranes; flow and 
pressure sensors; 
backwash valves 

P4 Dechlorination 
Removal of residual 
chlorine via UV 
treatment. 

UV reactor; chlorine 
sensor; control valves 

P5 Reverse Osmosis (RO) 
Removal of dissolved 
impurities under high 
pressure. 

RO membranes; high-
pressure pump; 
flow/pressure 
transmitters 

P6 Permeate Transfer & 
Backwash 

Transfer of purified 
water and reject-water 
backwash. 

Transfer pumps; 
backwash valves; level 
switches; flow 
transmitter 

Table 2: SWaT Process Stages, Descriptions & Physical Components 

The testbed itself comprises six sequential process stages (P1–P6) summarised in 
Table 2. Each stage is controlled by a dedicated Level 1 Programmable Logic 
Controller (PLC) and monitored via a SCADA system, HMI, and Historian. 
Within each stage, Level 0 sensors measure physical variables and PLCs execute 
control logic and actuate devices. All PLCs communicate over a supervisory 
network, meaning that an anomalous sensor reading, e.g., a manipulated value 
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in LIT101, can propagate through the control logic, potentially causing physical 
effects such as tank overflow or pump damage that impact downstream stages. 

The SWaT dataset documentation further provides extensive evidence of diverse 
and structured adversarial scenarios, including Single-Stage Single-Point 
(SSSP), Single-Stage Multi-Point (SSMP), Multi-Stage Single-Point (MSSP), and 
Multi-Stage Multi-Point (MSMP) attacks. These range from straightforward 
manipulations to stealthy attacks that introduce slow, gradual drifts in sensor 
and actuator values to evade trivial threshold-based attacks. Such intentional, 
non-random anomalies align with the need for a structured threat-intelligence 
framework to contextualise adversarial intent. 

Additionally, the scope of this evaluation is focused on a subset of eight attacks 
from the SWaT dataset where the initial feature attribution from Stage II 
correctly identified the ground-truth component. This selection, comprising 
primarily Single-Stage-Single-Point (SSSP) attacks, allows for a controlled 
assessment of the downstream explanation generation pipelines by ensuring the 
quality of their primary input. Following this baseline evaluation, a qualitative 
stress test, designed to address RQ4, is conducted on a more complex Multi-
Stage-Single-Point (MSMP) attack scenario. This additional analysis is designed 
to identify potential failure modes of the AXIS framework when faced with 
complex attacks and imperfect feature attributions. 

To facilitate a clear comparison, this evaluation distinguishes between two 
implementations of the Stage III explanation pipeline. The first, termed the 
Naïve RAG (N-RAG) Pipeline, represents a straightforward implementation 
where retrieved documents are passed to the LLM without advanced filtering. 
The second, the Metadata-Enhanced RAG (ME-RAG) Pipeline, refers to the 
full methodology outlined in Chapter 3.4, which employs heuristic metadata 
filtering and LLM-based tactic inference. 

Accordingly, this chapter evaluates the performance of both pipelines against 
raw XAI outputs and against each other across four distinct dimensions: 
objective content quality, user-centric perception, operational overhead, and 
robustness. 

4.2 RQ1: Quantitative Analysis of Explanation Quality  

To objectively measure the factual and contextual quality of the generated text 
by the AXIS framework, a quantitative content analysis was performed. Using a 
pre-defined evaluation rubric, the outputs from N-RAG and ME-RAG pipelines 
were scored for the full subset of validated attack scenarios. This expert-led 
evaluation assessed each explanation against three criteria on a 0-2 scale, where 
a score of ‘0’ denotes incorrect or hallucinated information, ‘1’ denotes generic or 
implied information, and ‘2’ denotes relevant and explicit information. The 
criteria were: (i) Process Grounding Accuracy, evaluating the correct 
identification of the component’s function within its process stage; (ii) Physical 
Impact Accuracy, measuring the correctness of the described physical 
consequence; and (iii) Adversarial Context Accuracy, assessing the relevance 
and specificity of the cited MITRE ATT&CK techniques. The complete scoring 
data for this analysis are available for review in Appendix B  Table 6. 
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Evaluation Metric 
N-RAG 

(Avg. Score 
out of 2) 

ME-RAG 
(Avg. Score 

out of 2) 

Improvement 
of ME-RAG 

over N-RAG (%) 
Process Grounding Accuracy 1.75 1.875 7.14 % 
Physical Impact Accuracy 1.00 1.25 25 % 
Adversarial Context Accuracy 0.75 1.875 150 % 
Overall Score 3.5 5 42 % 

Table 3: Quantitative Comparison of Explanation Quality 

The findings summarised in Table 3 demonstrate a clear enhancement in 
explanation quality attributed to the advanced methodology of the ME-RAG 
pipeline, which achieved a 42% higher overall score. The most pronounced 
improvement was observed in Adversarial Context Accuracy, which increased by 
a remarkable 150%. This result directly validates the efficacy of the LLM-based 
tactic inference step, which is unique to the ME-RAG pipeline. For instance, in 
several attack scenarios, the N-RAG pipeline either hallucinated incorrect 
MITRE ATT&CK identifiers or cited overly broad techniques. In contrast, the 
ME-RAG pipeline, grounded by its retrieved context, consistently provided 
specific and correct techniques, such as identifying ‘Modify Parameter (T0836)’, 
which is exactly how the attacks were simulated in the SWaT testbed. 

The analysis also revealed a notable 25% improvement in Physical Impact 
Accuracy. This can be illustrated by the attack on the MV-101 actuator, where 
the N-RAG explanation generically stated that a malfunction “could lead to 
overfilling or underfilling of the tank” (scoring a 1). The ME-RAG explanation, 
however, correctly inferred from the context that “if it remains open 
unintentionally, it could lead to overfilling…causing potential flooding” (scoring a 
2), demonstrating a more precise and actionable understanding of the physical 
risk, where the actual impact was indeed a tank overflow. This suggests that the 
richer adversarial context provided by the ME-RAG pipeline also enhanced the 
LLM’s ability to reason about the potential physical consequences of an attack. 

Finally, the improvement in Process Grounding Accuracy was a modest 7.14%. 
This suggests that the explicit metadata filtering in the ME-RAG pipeline had a 
negligible effect, likely a consequence of the focused and limited size of the 
knowledge corpus, for which the standard semantic and lexical retrieval of the N-
RAG pipeline was already sufficient. It is worth noting, however, that even the 
ME-RAG pipeline did not achieve a perfect score, indicating that its performance 
remains constrained by the completeness of the source knowledge base, 
particularly in providing the nuanced detail required for predicting precise 
physical impacts. 

4.3 RQ2: User-Centric Evaluation of Explanation Formats 

To investigate how the format of an anomaly explanation affects a non-expert’s 
interpretation, a user-centric survey was conducted. The experiment was 
designed as a fully counterbalanced, within-subjects study to mitigate ordering 
effects and individual bias, involving six participants with no to little prior 
professional experience in industrial control systems and cybersecurity. From the 
validated subsets of attacks, three distinct scenarios involving different system 
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components and process stages were selected for the user study to ensure a 
representative sample. Each participant was exposed to each of the three 
experimental conditions exactly once: (i) Raw XAI, comprising only the 
attribution information and relevant P&ID diagram; (ii) N-RAG, which 
augmented the Raw XAI output with the explanation from the naïve pipeline; 
and (iii) ME-RAG, which augmented the Raw XAI output with the explanation 
from the sophisticated pipeline. Following the presentation of each condition, 
participants rated their agreement with a series of statements on a 5-point 
Likert scale, targeting three core constructs: confidence in understanding the 
problem, perceiving actionability of the information, and the cognitive load 
required for the interpretation. Additionally, for the two N-RAG and ME-RAG 
natural language explanations, metrics related to clarity and trustworthiness 
were assessed. 

The results presented in Figure 5 indicate a clear and positive correlation 
between the sophistication of the explanation and the quality of user 
interpretation. The ME-RAG condition consistently outperformed the other 
conditions, achieving the highest scores for user Confidence (µ=4.50) and 
Actionability (µ=4.33), while significantly reducing the perceived Cognitive Load 
(µ=2.33). For instance, the cognitive load for ME-RAG was substantially lower 
than the RAW XAI condition (µ=3.50), and its confidence score was a full 1.5 
points higher than the baseline (µ=3.00). This suggests that the contextual 
enrichment provided by the ME-RAG explanation is effective in bridging the 
semantic gap, especially for non-expert users. This finding was reinforced by 
qualitative feedback; one participant noted that for the N-RAG and ME-RAG 
explanations, “The possible causes supported the anomaly explanation. Without 
that, it would not make any sense.” In contrast, when presented with only the 
RAW XAI output for the attack on the AIT-202 sensor, another participant 
commented that the information “could have [been] explained in user-friendly 
text,” highlighting the inherent difficulty users face when interpreting un-
contextualised data visualisations. 

 
Figure 5: Comparison of Explanation Metrics across Conditions 

Furthermore, in a direct comparison between the two natural language systems, 
the ME-RAG pipeline was rated higher for Clarity (µ=4.67 vs. µ=4.33 for N-RAG) 
and Trustworthiness. The difference in perceived credibility was particularly 
significant, with ME-RAG achieving a perfect mean Trustworthiness score 
(µ=5.0), a full 1.5 points higher than the N-RAG condition (µ=3.5). This gap is 
likely attributed to the observation of hallucinated techniques in the N-RAG 
generations. For example, in the FIT-401 attack scenario, the N-RAG 
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explanation confidently but incorrectly cited the MITRE ATT&CK technique for 
‘Data Manipulation’ as T1203, where the correct identifier is T1565. The ME-
RAG pipeline, guided by its structured retrieval process, did not exhibit such 
factual errors. This indicates that the retrieval process not only adds relevant 
information but also acts as a crucial guardrail against fabrication, substantially 
enhancing the perceived credibility and reliability of the explanation. 

4.4 RQ3: Analysis of Operational Overhead 

The third dimension of the evaluation addresses the practical viability of the 
AXIS framework, specifically for Stage III, by quantifying its operational 
overhead. System-level metrics were logged during the generation of every 
explanation to compare the resource consumption of the N-RAG and ME-RAG 
pipeline. The analysis focused on four key metrics: explanation generation 
latency in seconds, total API token counts (input and output), and the estimated 
monetary cost averaged across all explanations. It should be noted that the 
latency figures represent observed performance and are subject to variability 
from external factors such as API server load. Similarly, the monetary cost is 
based on the public pricing for the gpt-4o-mini model6, which was selected as a 
cost-effective choice appropriate for the scope of this project; more advanced 
models could potentially yield different results at a higher operational cost. The 
complete operational metrics for each evaluated attack are available for review in 
Appendix B  Table 7. 

Operational Metric N-RAG 
(Average) 

ME-RAG 
(Average) 

Increase for 
ME-RAG over 

N-RAG (%)  
Latency (s) 11.97 16.02 33.82 % 
Input Tokens 446.875 1415.25 216.70 % 
Output Tokens 343.625 483.25 40.63 % 
Monetary Cost ($) 0.0003375 0.0006375 88.89 % 

Table 4: Comparison of Operational Overhead 

The aggregated values summarised in Table 4 show that the advanced 
capabilities of the ME-RAG pipeline introduce a measurable increase in resource 
consumption. The multi-step retrieval and inference process led to an 88.89% 
increase in monetary cost and a 33.82% increase in average latency. This 
overhead is primarily driven by the significant 216.70% increase in input tokens, 
a direct consequence of the additional MITRE ATT&CK context retrieved and 
included in the prompt for the ME-RAG pipeline. While the raw data shows a 
general trend where higher token counts correlate with higher latency, it is not a 
strict linear relationship, indicating the influence of external factors like network 
conditions and API server load. Furthermore, the 40.63% increase in output 
tokens for the ME-RAG pipeline suggests that the richer context enabled to 
model to generate more comprehensive and detailed explanations. 

Ultimately, this operational overhead must be interpreted in the context of the 
benefits identified in the preceding sections. The data suggests a clear trade-off: 
the additional computational cost is directly associated with the retrieval and 

 
6 https://platform.openai.com/docs/pricing  

https://platform.openai.com/docs/pricing
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synthesis of the high-quality context that led to significant gains in explanation 
accuracy (RQ2) and user comprehension (RQ1). In safety-critical environments 
such as ICS, the value of providing demonstrably more accurate and actionable 
intelligence may well justify this modest increase in operational cost.  

4.5 RQ4: Framework Robustness Evaluation 

The preceding evaluations were conducted under controlled conditions with 
primarily SSSP attacks to establish a baseline. This final section addresses RQ4 
by performing a qualitative stress test on the RAG pipeline to evaluate its 
robustness against more complex scenarios and imperfect inputs. To this end, a 
representative MSSP scenario, attack 38, was selected. In this attack, an 
adversary manipulates AIT-402 and AIT-502 to cause chemical overdosing, but 
the Stage II ensemble attribution incorrectly identified AIT-201 as the most 
influential feature. This scenario was used to generate three explanations under 
different conditions to simulate varying levels of input fidelity: (i) an Ideal 
Control using the correct ground-truth features, (ii) an As-Is Imperfect version 
using the direct, flawed attribution, and (iii) a Top-3 Attribution version of the 
highest-scoring attributions, a mix of correct and incorrect features. The 
complete explanations are provided for review in Appendix B  Table 8. 

Condition Input 
Feature(s) Explanation Summary 

Ideal 
Control 

AIT-402, 
AIT-502 

Correctly identifies a “drastic shift in the chemical 
environment” due to significant ORP sensor 

increases. 
As-Is 
Imperfect 

AIT-201 
Hallucinates a narrative about a “minor disturbance 

affecting the conductivity measurement.” 

Top-3 
Attribution 

AIT-201, 
AIT-402, 
AIT-502 

Correctly identifies the significant ORP changes as 
the main issue while downplaying the “minor 

fluctuation” in conductivity. 

Table 5: Qualitative Summary of Explanation Generation under Stress 
Conditions for Attack 38 

The results of this comparative analysis, summarised in Table 5, reveal a 
significant degradation in explanation quality corresponding to the fidelity of the 
input. The Ideal Control condition produced a high-fidelity explanation that was 
accurate, coherent, and actionable. In stark contrast, the As-Is Imperfect 
condition demonstrated a critical failure mode. Guided solely by the incorrect 
feature, the pipeline generated a confident but entirely misleading explanation, 
i.e., a factual hallucination about a minor conductivity fluctuation, completely 
missing the actual attack. 

The Top-3 Attribution condition, however, yielded a more nuanced, medium-
fidelity result. Presented with conflicting context, the LLM successfully identified 
the large changes in AIT-402 and AIT-502 as the primary issue while correctly 
dismissing the minor change in AIT-201 as unlikely to “significantly impact 
operations.” While this demonstrates a degree of resilience, the resulting 
explanation was less focused and direct than the ideal control, as it still had to 
account for the irrelevant information.  
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Chapter 5 Conclusion 

This project commenced with the identification of a critical ‘semantic gap’ in 
Industrial Control Systems (ICS) security: the disconnect between the abstract, 
numerical alerts of AI-based anomaly detection systems and the context-rich, 
actionable intelligence required by human operators. To address this deficiency, 
this project designed, implemented, and validated AXIS, a framework that 
leverages retrieval-augmented large language models to function as a 
sophisticated explanation layer, synthesising low-level feature attributions with 
a curated domain knowledge base. The subsequent empirical evaluation provides 
strong, data-driven evidence of the framework’s potential to bridge this semantic 
gap, suggesting that the contextualisation of alerts is a fundamental requirement 
for effective human-AI collaboration in safety-critical environments. 

5.1 Discussion 

The findings from the multi-faceted evaluation directly affirm the core 
hypotheses of this dissertation. A rigorous quantitative content analysis (RQ1) 
revealed that the ME-RAG pipeline produced explanations of demonstrably 
superior quality, achieving a 42% higher overall score than a naïve baseline, 
driven by a 150% improvement in adversarial context accuracy. This result 
validates the advanced, two-step retrieval process that addresses the knowledge 
limitations of pre-trained LLMs. This objectively superior output was then 
validated in a user-centric study (RQ2), which showed that the narrative 
explanations profoundly improved user interpretation, yielding substantially 
higher confidence and perceived actionability while reducing cognitive load. This 
stood in stark contrast to the naïve implementation, which was prone to factual 
hallucinations that diminished user trust, highlighting the necessity of the ME-
RAG’s structured retrieval process. Crucially, the framework also reduced the 
cognitive load required for interpretation, demonstrating its potential to mitigate 
the alert fatigue endemic to security operations.  

This enhancement in quality, however, is not without cost. The analysis of 
operational overhead (RQ3) revealed that the ME-RAG pipeline’s complex 
methodology incurred an 89% increase in monetary cost and 34% increase in 
latency, driven primarily by a 217% increase in input tokens. These results 
represent a critical quantification of the inherent trade-off between speed, cost, 
and intelligence. In an operational setting where the cost of a misinterpreted 
threat can be catastrophic, such data allows for an informed decision, where the 
modest increase in expense is the price for demonstrably more accurate, reliable, 
and trustworthy intelligence that can accelerate an operator’s response. 

The primary implication of this work lies in demonstrating how LLMs can be 
leveraged to add a further dimension of explainability to existing state-of-the-art 
anomaly detection systems, thereby validating their use as a powerful tool for AI-
assisted anomaly triage. The AXIS framework moves beyond the passive act of 
explanation and functions as an active cognitive aid. By translating the opaque 
outputs of an otherwise black-box detection model into a human-readable 
narrative grounded in verifiable documentation, it serves as an intelligible 
translational layer that demystifies the AI’s reasoning. This directly confronts 
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the significant deployment challenges of operator scepticism previously identified 
in the survey. The structured RAG process, which coerces the LLM to synthesise 
external evidence rather than relying on its internal knowledge, acts as a crucial 
guardrail against the very hallucination problems that make generic LLMs 
untrustworthy for critical applications. This shift from opaque prediction to 
transparent, evidence-based reasoning may represent a foundational step 
towards building the trust required to integrate advanced AI systems into the 
security workflows of critical national infrastructure. 

5.2 Limitations 

It is imperative to acknowledge the limitations of this study. The robustness 
stress test (RQ4) provided a stark illustration of the framework’s primary 
vulnerability: its fidelity is inextricably linked to the fidelity of its inputs. When 
presented with a flawed feature attribution, the pipeline generated a confident 
but entirely misleading explanation through a factual hallucination that 
completely missed the true nature of the attack. While using multiple feature 
attribution scores showed a degree of resilience, this finding underscores that 
AXIS is an explanation layer, not a detection model, and its performance is 
contingent upon the efficacy of the upstream anomaly detection stage. Secondly, 
the principle regarding the primacy of context was validated, highlighting the 
framework’s dependency on a comprehensive and accurately curated knowledge 
base. Thirdly, the user study, while insightful, was conducted with non-experts 
as ‘proxy operators’ due to the nature of this project; the cognitive processes and 
informational needs of seasoned professionals may differ, warranting further 
investigation with domain experts. Finally, the framework’s reliance on external 
API services for document retrieval and LLM inference introduces a dependency 
on factors beyond its control, such as network conditions and service load, which 
can impact the consistency of its latency. While these factors limit the direct 
generalisability of this specific implementation, the fundamental principles of the 
AXIS framework as a methodology for synthesising attribution and context 
remain sound. 

5.3 Future Work 

These limitations provide a defined roadmap for future research. The most 
pressing challenge is to enhance the framework’s resilience to imperfect inputs, 
perhaps by incorporating uncertainty quantification to signal low confidence 
when faced with ambiguous data. A second avenue is to enrich the context 
provided to the LLM by fusing physical process data with complementary 
sources, such as network traffic logs. Further work should also systematically 
evaluate the impact of more powerful LLMs with enhanced reasoning capabilities 
and larger context windows. Finally, the static, one-shot nature of the 
explanations could be evolved into a dynamic, interactive dialogue, transforming 
the system from an explanation generator into a collaborative analytical partner. 
By pursuing these avenues, the foundational work presented in this dissertation 
can be extended, moving us closer to a future where AI in critical infrastructure 
is not only powerful but also profoundly understandable. 
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Appendix A   Code Snippets 
 

ensemble_time_averaged_scores = np.zeros(num_features) 
 
for i in range(NUM_SAMPLES): 
    mse_slice = mse_scores_window[i] 
    sm_slice = sm_scores_window[i] 
    lemna_slice = lemna_scores_window[i] 
 
    mse_norm = mse_slice / np.sum(mse_slice) 
    sm_norm = sm_slice / np.sum(sm_slice) 
    lemna_norm = lemna_slice / np.sum(lemna_slice) 
     
    ensemble_scores_slice = np.zeros(num_features) 
    for j in range(num_features): 
        if is_actuator(DATASET, sensor_cols[j]): 
            ensemble_scores_slice[j] = mse_norm[j] + BETA * 
sm_norm[j] + BETA * lemna_norm[j] 
        else: 
            ensemble_scores_slice[j] = mse_norm[j] + sm_norm[j] + 
lemna_norm[j] 
     
    ensemble_time_averaged_scores += (ensemble_scores_slice / 
np.sum(ensemble_scores_slice)) 

Snippet 1: Ensemble Attribution Scoring 

 
def __get_heuristic_filters(self, top_feature: str) -> 
MetadataFilters: 
    """Generate metadata filters based on the top attribution 
feature.""" 
    filters = [ 
        MetadataFilter( 
            key="component_id", operator=FilterOperator.EQUAL_TO, 
value=top_feature 
        ) 
    ] 
    for ch in top_feature: 
        if ch.isdigit(): 
            filters.append( 
                MetadataFilter( 
                    key="stage_id", 
operator=FilterOperator.EQUAL_TO, value=f"P{ch}" 
                ) 
            ) 
            break 
    return MetadataFilters(filters=filters, 
condition=FilterCondition.OR) 

Snippet 2: Heuristic Extraction of Metadata Filters 

 
EXPLANATION_PROMPT = """ 
You are an expert in industrial control systems security. 
 
An anomaly was detected in component: {top_feature} 
 
************* 
Statistical evidence: 
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{anomaly_stats} 
 
Context: 
{context} 
************* 
 
Provide a concise, data-driven analysis. Keep each response field 
to 2-3 sentences maximum. Focus on specifics based on the 
statistical evidence rather than generic possibilities. 
 
Analyse: 
- The component function and what the statistical pattern 
indicates physically happened 
- Root causes that would create this exact statistical signature 
based on MITRE ATT&CK framework 
- Specific impacts based on this component's role in the stage and 
the statistical evidence 
- Targeted mitigation for this particular anomaly pattern based on 
MITRE ATT&CK framework 
 
Base analysis strictly on provided context. Reference specific 
MITRE ATT&CK techniques, causes, mitigations where applicable. 
""" 

Snippet 3: Structured Explanation Generation Prompt 
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Appendix B   Raw Evaluation Data 
 

 Process Grounding 
Accuracy 

Physical Impact 
Accuracy 

Adversarial 
Context Accuracy 

Attack 
ID N-RAG ME-RAG N-RAG ME-RAG N-RAG ME-RAG 

1 2 2 1 2 1 2 

2 2 2 2 2 1 2 

6 2 2 1 0 1 2 

8 2 2 1 1 1 1 

10 1 2 1 1 0 2 

20 1 2 1 1 0 2 

22 2 1 0 1 1 2 

23 2 2 1 2 1 2 
Table 6: Evaluation Scores for Explanation Quality 

  

 Input Tokens Output 
Tokens Latency (s) Cost ($) 

Attack 
ID 

N-
RAG 

ME-
RAG 

N-
RAG 

ME-
RAG 

N-
RAG 

ME-
RAG 

N-
RAG 

ME-
RAG 

1 480 1465 305 488 10.06 15.0 0.0003 0.0007 

2 432 1370 279 480 15.73 16.85 0.0003 0.0006 

6 461 1465 227 465 9.7 15.15 0.0003 0.0006 

8 476 1484 572 513 19.27 19.07 0.0005 0.0007 

10 411 1327 293 455 9.2 17.13 0.0003 0.0006 

20 421 1418 546 446 14.73 15.44 0.0004 0.0006 

22 418 1297 248 501 9.65 14.41 0.0003 0.0006 

23 476 1496 279 518 7.52 15.08 0.0003 0.0007 
Table 7: Operational Metrics for Attack Explanation Generation 
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Condition Input 
Feature(s) 

Explanation Potential Impact 

Ideal 
Control 

AIT-402, 
AIT-502 

The components AIT402 
and AIT502, which 
measure ORP, showed 
significant increases in 
their detected values 
(↑80.49% and ↑87.40% 
respectively) compared 
to their baselines. This 
sudden change indicates 
a possible malfunction or 
a drastic shift in the 
chemical environment 
they monitor, likely 
affecting the accuracy of 
the readings. 

Given that AIT402 and 
AIT502 are critical for 
monitoring ORP levels, 
such anomalies could 
lead to incorrect process 
control decisions. This 
could compromise the 
integrity of the system, 
potentially resulting in 
unsafe operating 
conditions or product 
quality issues. 

As-Is 
Imperfect AIT-201 

The AIT201 component, 
which measures 
conductivity, showed a 
slight decrease in its 
detected value from the 
baseline, indicating a 
potential drop in the 
conductivity level being 
measured. This sudden 
change of -0.01% 
suggests that the system 
may be experiencing a 
transient issue or a 
minor disturbance 
affecting the 
conductivity 
measurement. 

As AIT201 is connected 
to multiple PID 
controllers (P201 to 
P208), any fluctuation in 
its readings can lead to 
incorrect control actions, 
potentially affecting the 
overall process stability 
and efficiency. If the 
conductivity is critical 
for process control, this 
anomaly could result in 
suboptimal operation or 
even process failure. 

Top-3 
Attribution 

AIT-201, 
AIT-402, 
AIT-502 

The AIT201 component, 
responsible for 
measuring conductivity, 
showed a slight decrease 
of 0.01% from its 
baseline, indicating a 
minor fluctuation that 
may not significantly 
impact operations. In 
contrast, AIT402 and 
AIT502, which measure 
ORP, exhibited 
substantial increases of 
80.49% and 87.40%, 
respectively, suggesting 

The minor change in 
AIT201 is unlikely to 
affect system 
performance, but the 
drastic increases in 
AIT402 and AIT502 
could indicate potential 
chemical imbalances or 
contamination, which 
may lead to operational 
inefficiencies or 
equipment damage if not 
addressed promptly. 
These anomalies in ORP 
readings could disrupt 
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a sudden and significant 
change in the chemical 
environment being 
monitored. 

processes that rely on 
stable chemical 
conditions, potentially 
affecting product quality 
and safety. 

Table 8: Complete Generated Explanations under Stress Conditions for 
Attack 38 


